Multicore and GPU Parallelization of Neural Networks for Face Recognition

نویسندگان

  • Altaf Ahmad Huqqani
  • Erich Schikuta
  • Sicen Ye
  • Peng Chen
چکیده

Training of Artificial Neural Networks for large data sets is a time consuming task. Various approaches have been proposed to reduce the efforts, many of them by applying parallelization techniques. In this paper we develop and analyze two novel parallel training approaches for Backpropagation neural networks for face recognition. We focus on two specific parallelization environments, using on the one hand OpenMP on a conventional multithreaded CPU and CUDA on a GPU. Based on our findings we give guidelines for the efficient parallelization of Backpropagation neural networks on multicore and GPU architectures. Additionally, we present a traversal method finding the best combination of learning rate and momentum term by varying the number of hidden neurons supporting the parallelization efforts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallelization of Rich Models for Steganalysis of Digital Images using a CUDA-based Approach

There are several different methods to make an efficient strategy for steganalysis of digital images. A very powerful method in this area is rich model consisting of a large number of diverse sub-models in both spatial and transform domain that should be utilized. However, the extraction of a various types of features from an image is so time consuming in some steps, especially for training pha...

متن کامل

Introducing a method for extracting features from facial images based on applying transformations to features obtained from convolutional neural networks

In pattern recognition, features are denoting some measurable characteristics of an observed phenomenon and feature extraction is the procedure of measuring these characteristics. A set of features can be expressed by a feature vector which is used as the input data of a system. An efficient feature extraction method can improve the performance of a machine learning system such as face recognit...

متن کامل

Face Detection Using GPU-Based Convolutional Neural Networks

In this paper, we consider the problem of face detection under pose variations. Unlike other contributions, a focus of this work resides within efficient implementation utilizing the computational powers of modern graphics cards. The proposed system consists of a parallelized implementation of convolutional neural networks (CNNs) with a special emphasize on also parallelizing the detection proc...

متن کامل

An approach to Improve Particle Swarm Optimization Algorithm Using CUDA

The time consumption in solving computationally heavy problems has always been a concern for computer programmers. Due to simplicity of its implementation, the PSO (Particle Swarm Optimization) is a suitable meta-heuristic algorithm for solving computationally heavy problems. However, despite the simplicity, the algorithm is inefficient for solving real computationally heavy problems but the pr...

متن کامل

Face Detection with methods based on color by using Artificial Neural Network

The face Detection methodsis used in order to provide security. The mentioned methods problems are that it cannot be categorized because of the great differences and varieties in the face of individuals. In this paper, face Detection methods has been presented for overcoming upon these problems based on skin color datum. The researcher gathered a face database of 30 individuals consisting of ov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013